Kinetics of calcium binding to dental biofilm bacteria

نویسندگان

  • Tarcísio Jorge Leitão
  • Jaime Aparecido Cury
  • Livia Maria Andaló Tenuta
چکیده

Dental biofilm bacteria can bind calcium ions and release them during a pH drop, which could decrease the driving force for dental demineralization (i.e. hydroxyapatite dissolution) occurring at reduced pHs. However, the kinetics of this binding and release is not completely understood. Here we validated a method to evaluate the kinetics of calcium binding and release to/from Streptococcus mutans, and estimated the importance of this reservoir as a source of ions. The kinetics of calcium binding was assessed by measuring the amount of bound calcium in S. mutans Ingbrit 1600 pellets treated with PIPES buffer, pH 7.0, containing 1 or 10 mM Ca; for the release kinetics, bacterial pellets previously treated with 1 mM or 10 mM Ca were exposed to the calcium-free or 1 mM Ca PIPES buffer, pH 7.0, for up to 60 min. Binding and release curves were constructed and parameters of kinetics were calculated. Also, calcium release was assessed by exposing pellets previously treated with calcium to a pH 5.0 buffer for 10 min. Calcium binding to bacteria was concentration-dependent and rapid, with maximum binding reached at 5 min. On the other hand, calcium release was slower, and according to the calculations, would never be complete in the groups pretreated with 10 mM Ca. Decreasing pH from 7.0 to 5.0 caused a release of calcium able to increase the surrounding fluid calcium concentration in 2 mM. The results suggest that dental biofilm bacteria may act as a calcium reservoir, rapidly binding ions from surrounding fluids, releasing them slowly at neutral pH and promptly during a pH drop.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی تاثیر عصاره هیدروالکلی پوست انار بر روی تشکیل بیوفیلم حاصله از باکتری سودوموناس آئروجینوزا

Introduction & Objective: Microorganisms form biomass as biofilm in response to many factors, in order to adapt to hostile extracellular environments and biocides. Using different herbal compounds are of those strategies to deal with biofilm. It has been proved that plants extracts such as pomegranate, raspberry and chamomile essential oils have anti-biofilm effects. This study aimed to evalu...

متن کامل

Evaluation of Antibiotic Resistance and Biofilm Formation Ability Uropathogenic E. coli (UPEC) Isolated From Pregnant Women in Karaj

Background and Objective: Uropathogenic Escherichia coli (UPEC) are the most common cause of urinary tract infections. The binding of these bacteria to epithelial cells and the formation of biofilms cause these bacteria to be further colonized and difficult to remove in the urinary tract. This study aimed to determine the antibiotic resistance and to evaluate the biofilm formation power in Esch...

متن کامل

نقش بیوفیلم باکتریایی در پیامدهای بالینی ناشی از عفونت های دهان و دندان

Oral and dental diseases such as dental caries and gingivitis are common problems in human societies. The formation of biofilms is considered as a very important mechanism of disease by these bacteria. The present study is an overview of these infectious diseases and their bacterial etiology, the mechanism of formation and role of dental plaque biofilm in the development of these infections and...

متن کامل

Taking the starch out of oral biofilm formation: molecular basis and functional significance of salivary α-amylase binding to oral streptococci.

α-Amylase-binding streptococci (ABS) are a heterogeneous group of commensal oral bacterial species that comprise a significant proportion of dental plaque microfloras. Salivary α-amylase, one of the most abundant proteins in human saliva, binds to the surface of these bacteria via specific surface-exposed α-amylase-binding proteins. The functional significance of α-amylase-binding proteins in o...

متن کامل

The cariogenic dental biofilm: good, bad or just something to control?

This paper discusses the role of dental biofilm and adjunctive therapies in the management of dental caries. Dental biofilm is a site of bacterial proliferation and growth, in addition to being a location of acid production. It also serves as a reservoir for calcium exchange between the tooth and saliva. The salivary pellicle, a protein-rich biofilm layer, regulates the reaction between tooth s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018